Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
2.
Chembiochem ; : e202200461, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2117213

RESUMEN

SARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape. Thus, there is still an unmet need for new antiviral drugs. In this study, we constructed pharmacophore models based on the spike RBD of SARS-CoV-2 and SARS-CoV-2 Omicron variant and performed virtual screen for best-hit compounds from our disaccharide library. Screening of 96 disaccharide structures identified two disaccharides that displayed higher binding affinity to RBD in comparison to reported small molecule antiviral drugs. Further, screening PharmMapper demonstrated interactions of the disaccharides with a number of inflammatory cytokines, suggesting a potential for disaccharides with multiple-protein targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA